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Diffusion and trapping on a one-dimensional lattice
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The properties of a particle diffusing on a one-dimensional lattice where at each site a random barrier and a
random trap act simultaneously on the particle are investigated by numerical and analytical techniques. The
combined effect of disorder and traps yields a decreasing survival probability with broad distridaton
norma). Exact enumerations, effective-medium approximation, and spectral analysis are employed. This one-
dimensional model shows rather rich behaviors which were previously believed to exist only in higher dimen-
sionality. The possibility of a trapping-dominated super-universal-class is sugge3t€6.3-651X%96)03606-

9]

PACS numbegps): 05.40+j, 05.60+w, 61.43.Hv

I. INTRODUCTION analytical solution which would extend the results presented
here.

One-dimensional models are widely used in the physics of Diffusion on a one-dimensional hierarchical lattitE0]
disordered systenid]. This is because on one hand they areand multifractal characterization of the escape probability
often good representatives of higher-dimensional models anld 1] were previously considered in this context.
on the other hand they are much easier to handle. In recent Our aim here is then twofold. On one hand, we shall show
decades the importance of investigating simple diffusion irfhat most of the pathological features of the model consid-
the presence of disorder and trapping has been widely apprél€d in Refs[8,9] are also present in this simplified low-

ciated as a toy model for complex systems, including migra_dimensional version. On the other hand, the results presented

tions of optical excitationg2], polymer physics[3], and here can be regarded as a complement of earlier investiga-

T : ; tions [6,12] where the total probability is conserved, thus
diffusion-limited binary reaction§4]. See, e.g.[5] and[6] L X .
for an exhaustive review. providing a direct test of the effect of the nonconservation of

A . . . . the probability.
From the mathematical viewpoint the analytical solution The outline of the paper is as follows. In Sec. Il we intro-
of the diffusion problem of particles diffusing before getting duce the model and recall some well knbwn geﬁeral manipu-
completely absorbed by permanent traps has proved an ex

Iy , ) ions of disordered one-dimensional lattices. Section Il
tremely difficult task and only an asymptotic solution for the oqntains a numerical solution of the master equation. Section

survival probability(to be defined belowin the presence of |\ contains an effective-medium approximation to the diffu-
uncorrelated disorder could be given using sophisticate@jon, which is shown to be inadequate. However, in Sec. V a
techniqueg7]. A variation of this problem, in the presence nheuristic argument patterned after Grassberger and Procac-
of strongly correlatedpercolating disorder, was also re- cia’s similar reasoning for the Donsker-Varadhan cige
cently numerically investigatefB,9], and it was observed provides an intuitive explanation of the numerical results.
that whenever the total survival probability is an erratically Section VI contains a detailed numerical investigation of the
decreasing functiorfi.e., detailed balance is violatethew influence of trapping on the spectrum and the localization
and unexpected behaviors such as enhanced diffusion, bregioperties. Finally, in Sec. VIl some conclusions are drawn
ing of self-averaging, and emergence of Lifshitz tdis9] up.

appear. All these latter phenomena were somehow believed

to stem from the percolating lattice used to model the disor- Il. MODEL

derl_.|ere we shall investigate a different problem, where _Consider a par_ticle moving on a one-qlimensiona! _Iattice
walks are partially and randomly absorbedeathsite of a  With random barriers and random trapping probability on
one-dimensional lattice, thus leading to a nonconservation dfach site. The master equation reads

the probability. From the physical point of view this model

can mimic the partial absorption of a set of excitons wander- PXolx(H D=1~ éx)PXox(t) +WX:X—1PX0!X—1(t)

ing in mixed crystals. We shall show that despite the low tw p (M) 1)
dimensionality of the model, a rich variety of features quali- XXF1T X X+ 1

tatively similar to the ones observed in the trapping in per- - . ) )

colating disordef8,9] can be found. The low dimensionality for the probabilityP, ,(t) of being at sitex at timet, hav-
of the model, however, leaves open the possibility of a fulling started from site, at the initial timet=0. In this nota-
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tion w, , is the hopping probability from sity to site x,
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where we have indicated Wit,éX the absorption rate at site

€,=Wy_1x+ Wy 1,<1, andye[0,1] is a parameter defining and used the tildes to indicate the quantities which are rates.
the sojourn probability, which can be continuously tunedBy balancing the gain, loss, and sojourn terms to unity, it is

from from 1 (no trapping to O (full trapping. Thus at each
time step a particle at site can move to sitex+1 with
random probabilityw, .. 1, Stay atx with sojourn probability
v(1—¢€,), and disappear with probability (1y)(1—e€,). In

the following we shall consider only the case of symmetric

hopping probability (v, ,=w, ) and an infinite lattice.

easy to see thgb,=(1—v)(1—¢€,). However, it should be
stressed that Eq7) is not the continuum limit of Eq(1).

IIl. EXACT ENUMERATION

We have considered a distribution of the disorder given

As is well known [1], when y=1 this model can be by

mapped into a variety of other one-dimensional models.
The (discrete Laplace transfornP, ,(w) of the prob-

p(wW)=21"%1—a)w™ *6(w) 6(1/2—w), )

ability Py (1) satisfies an equation of motion which can bewhere ae(—«,1). By varying the parametex we can pass

cast in the following Green equation for a tight bindifTdB)
Hamiltonian:

; [E—7(7)1xyGxy y(E) = Sy, 2

corresponding to the generalized TB Hamiltonian
]/xy( ) =Qx(y) 5y,x_Wx,y( 5y,x—1+ 5y,x+1)v ©)

where we have define€,(y)=ye,+1—y and GXO'X(E)
E—Exo,x(w)b:—E- Here the(discrete Laplace transform
is defined as

ox(t)
Pyyx(@)= E (1+w Ao (4)

On the other hand, Eq1) can be written in the form
Py, t+ 1)=§ Tuy(7) Py (D), (5)

where we have defined the transition matrix

v(1— Gx)
Wy.y if |X_y|:1 (6)
0 otherwise.

if x=y
Tx,y( ')’) =

It is then easy to check that #<1 (and thus>,T, <1 for

anyx), then all the eigenvaluga ,} of T arestrictly less than
unity, i.e.,|\,|<1 for anya, unlike the conserved casg=1)

where the fact that the maximum eigenvalug is nonde-
generate and equal to 1 irrespective of fieite) size of the
system is ensured by the Perron-Frobenius theor&ah

Equivalently, this means that the eigenvaly&s,} of the
Hamiltonian(3) are all strictly positive, i.e.,E,>0 for any
.

from weak disorder (a<<0) to strong disorder(a—1). The
casea=0 corresponds to a uniform distribution and it is
marginal in the sense that the inverse first moment is loga-
rithmically divergent. We shall indicate with an overbar the
average over the disordgi8) which is assumed to be
quenchedThe simplest quantity that one would like to com-
pute is the mean-square displacement

EX(X_XO)ZPXO,X(I)
Pon

(x*(t))= €)

where it should be noted that the denominator must be in-
cluded since the total probability is not conserved. The dis-
order average of the latter is called thervival probability
P4(t) and it is a decreasing function of time, once we have
chosen the initial conditionB,(0)=1. The return probabil-

ity
Py, ()

=P (D 19

Po(t)_

is another interesting quantity to look at and it is again dif-
ferent from thesurvival returnprobability P2(t) = Po.xo(t)

in view of the nonconservation of the probability. A suitable
normalization procedurf8] is to be used in order to avoid a
quick underflow of the survival probability.

We numerically solved the master equation exactly up to
t=1000 for three representative values of the strength of the
disorder, namelyg=—0.5 (weak disorder, a=0 (marginal
disordej, and «=0.5 (strong disorder The lattice size was
chosen sufficiently largéup to N=2'9) to avoid finite size
effects due to the boundaries. Our estimates are based on an
average of three samples of 1000 different configurations
each. Errors are statistical.

The casey=1 was previously studied in Ref6] and our
numerical results are in perfect agreement with the one re-
ported there. Indeed, we find

(x*(0)=t?", (11)

All the results presented in this paper were obtained using
the discrete time equatiol). The continuum time counter- Wherev is the correlation length exponent, and

part of Eq.(1) would be, in the coutinuous time random walk

(CTRW) formulation,
atpxo,x(t) :Wx,xflpxo,xfl(t) +\;Vx,x+ 1Px0,x+ 1(t)

— &Py x(1) = BePx, «(1), (7)

Po(t)=t"%2, (12)
where d; is the return probability exponent. Our estimates
are 2=0.99+0.01 and 0.6&0.01 fora=0 and 0.5, respec-
tively, which compare well with the expected values 1 and
2/3.
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, — — — — stressed thalg bears the meaning of ttspectral dimension
- . [6] only in the casey=1.
- Although we monitored the behavior of the survival prob-
1 ability and found that it decays as a stretched exponential
(i.e., with an argument for the exponential which is a power
of the time less than)l we also found that the numerical
value of the exponent is not very easy to pin down. This was
to be expected: a similar feature occurs in the Donsker-
Varadhan problenpl14].
_ In view of these results, one expects both the survival
4 probability and the survival return probability to ben-self-
. averaging quantities. We investigated the full probability
1 distributions of both quantities. We fir{dee Fig. 2that they
- rather accurately follow a log-normal distribution:

T
» > r [ ] [=] B3

In <x2(t)>

. ~ B 1 —(In X—x,)?
L /[X('[)]—X\/2 5 ex 203

TOy

}, (13

FIG. 1. Log-log plot of the mean square displacemedi(t)) where X(t) = PXOYXO(t) or E><F)><0v><(t)' Here A, and Utz are
for a single configuration in the cases:1 (no trap$ andy=0 (full the mean and the variance of the distribution, respectively. If
trap for representative values of the disorde=—0.5,0,0.5. The = asymptotically ¢>1) it happens thatzrt2>)\t then self-
y=0 case appears to be independent of the strength of the disordawveraging isbroken (see the discussion in Rdig]). Both
parameter. these quantities can be computed directly as fixg} @nd
second ¢-2) moments of the distribution but also indirectly
The casey=0, corresponding to a full trapping, appears by fitting the evolution of the log-normal function at various
to be completelytrapping dominated Indeed, here the Vvalues oft. We find the following behavior fot>1:
sample-to-sample fluctuations are enormous and they com-
pletely rule the diffusion. In order to have a feeling for this, o2 ~12X (14)
we plotted in Fig. 1 the mean-square displacement for a
single configuration obtained with the same initializing seed , . i i .
in the cases/=1 and 0 for various strengths of the disorder, o the survival probability(and this defines the “free-
The staircase behavior which can be observed in the cag1€rdy” exponenk), and a similar behavior for the survival
y=0 is a consequence of the nonconservation of the prod€turn probabilitywhich defines the analogous expongpit
ability. A similar effect occurs in the return probability. This OUr best estimates for these exponents are reported in Table
rather peculiar feature was already observed in the model df On the other hand, we find that asymptotically~t for
Ref. [8]. Here, however, the extremely weak dependence opoth the survival and the surV|_vaI return prqbabmty. Since in
the behavior on the strength of the disorder is noteworthy. @ll c2ses 2>1 the self-averaging property is brokgsi.
Upon disorder averaging we find, in the=0 case, that GAS a final remark we computed higher mome[rzibs“(_t)),
the first moment(x(t))] is zero as expected, and the second<_x (t)), etc] in the attempt to find signatures of multifracta-
moment(x?(t)) and the return probabilitf,(t) follow the lity as suggested by the results of REf1]. We fouf‘d that .
behaviors(11) and (12), respectively. all the moments were related to the sgcond one wrespe.c_twe
Our best estimates for the exponenndd, are reported of the s_trength of thg d|§order, t.hus ruling out the possibility
in Table I. As mentioned above, the very similar result for©f multifractal behavior in the size of the walk.
the three cases of is somewhat surprising, but it is in agree-

ment with the aforementi_on_ed interpreta_ltion. Although the IV. EEFECTIVE-MEDIUM APPROXIMATION
three values are not all within the numerical errors, we can-
not rule out the possibility that the universality classnide- In this section we will tackle the problem of solving Eq.

pendentof the disorder choice. We also checked that all the(1) by using an effective-medium approximati®MA). Al-
intermediate cases<0y<1 behave as in thg=0 case after a though this approximation is known to fail in many situa-
transient time which depends on the valueyoft should be  tions[5], it nevertheless gives extremely accurate results for
the problem described bfi) with y=1 [6]. Here we shall
TABLE I. Summary of the exponentsandd, for the y=0 case ~ C&rry the successful recipe given[i] to the other extreme,

at three representative values of the strength of the disorder. ~ nNamely, the case of full trgppin(qy=0).
The equation of motion for the Laplace transform

@ 2v dg/2 EXO,X(w) can be written in the forngtaking x,=0 for con-
-05 1.24-0.01 0.57-:0.01 creteness

0 1.25+0.01 0.58-0.01 B B 7

0.5 1.26-0.01 0.60-0.01 Zox(0)=py—1(0) Zox—1(0) + py(@) Zy i 1(0) + Sy o,

(15
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FIG. 2. Distribution density probability for the survival probability for time stéps200,400,600,800,1000. The full lines correspond to
the fitted log-normal distribution of the foriii3). Shown are the cases=—0.5, 0, and 0.5 corresponding ta), (b), and(c), respectively.

whereZ g, (w)=(1+ w)IBOVX(w) and where we have defined respectively. In this way the problem is reduced to first order
M fg—1) =Wy x+1(Wy_1,)/(1+ w). Forx>0 andx<0 one  and can be solved by continued fractions. Kor0 one finds

can introduce the following new fields: the following recursions:
+ Mx—1(®) fé)o,x(a’) _ Mx(w)gb,x(w) 2
- i . =———" - Hx—1(o)
P @ P T T ) b (0)= T, a
(16) x+1\ @

TABLE Il. Summary of the exponentg and y, defined in the A similar equation can be found for<0. It should be noted
text. The labelsD) and () mean direct evaluation and evaluation that the support for the"'~ has to be constrained in such a
from the log-normal distribution, respectively. The values corre-way that Eq.(17) be sensible. From Ed15) for the case
sponding to a dash were considered unreliable due to the presenge=0 and using Eq(17) and the corresponding one R 0

of a strong curvature in the preasymptotic regimes. one easily finds that
a x(D) xo(D) x(1) xo(1) 7 1
—05 070:001 072001 072001 0.7G-0.01 Zod @)= T T (@) (18)
0 0.73£0.01 - 0.7220.01  0.70-0.01 1 -1
0.5 - - 0.720.01  0.73:-0.01

The disorder average of E(L8) thus gives
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where ¢.(w) is an effective field to be found self-
consistently. We can immediately show that the self-
consistency equation decouples and its solution is given by

1-\V1-24%(w)

de(w)= — (22)

[pmalw)=pma/(1+ w)] provided that the second moment of
the distribution

o J du pPp(p)

= 23
K=" du p(p) 3
exists. As a consequence,
Cod w) ! (24)
Sodw)=T—m—v=.
V1-4pi(w)

Due to conditions imposed on the transition rates, we have
that u,=<1/2. If equality holds then the result is identical to
the one obtained in the absence of disorder. If, however,
m2<1/2 then by antitransforming back to the direct domain
(in the continuum approximationit is easy to show that the
survival return probability behaves as

PAt)=e Mo(2uat), (25)

where 14(2) is the zeroth-order Bessel function. Upon as-
ymptotic expansiof15] the leading behavior fors>1 is

0 e (1-2ua)t 1 1
= +0( ]|
Ps(t) P 1+ 160t (0] tZH (26)

The result isqualitatively different from the numerical indi-
cation. This was to be expected[#)] that the EMA may not

be capable of capturing the nuances of systems where large
sample-to-sample fluctuations are present.

FIG. 3. Integrated density of states on the whole spectrum

E €[0,2] for y=1 (a) and y=0 (b) for the same strengths of disor-

der as in Fig. 2.

Fodr= [ do. [ dg 160100

1
X 0(1-¢.—¢_), (19

1-¢.—¢-

where the distribution$l (¢,) andIl_(¢_) are given by

HZ(%FJ du P(M)f d¢'+HZ(¢'+)5<¢+—

and similarly forII(¢_). Now comes the EMA approxima-

tion:

5 (p) =T, (p_)=8(p— dpe(w)),

.
1—¢.)
(20

(21)

V. HEURISTIC ARGUMENT

In this section we shall present an intuitive argument
yielding a stretched exponential for the survival probability
in qualitative agreement with our numerical finding46].
The argument is based on a similar one given by Grassberger
and Procaccid?] for the Donsker-Varadhan problem, and
provides a plausible explanation of the irrelevance of the
choice of the distribution for the hopping probabiligyw).

The main idea is that the maximum contribution to the
survival probability comes from rare regions where the hop-
ping probabilities are all very close to 1/2, say in the interval
[1/2—¢€,1/2] (with 0<e<1/2) for the sake of the argument. If
s is the number of sites of one of these regions, the typical
number of steps necessary to explore the regionsis s*”.

If there were no leaking of probability the decay of the sur-
vival probability in this regionP(t,s) would be exponential.
However, during the time, there is a loss of probability of
order €. The probabilityZ(s) of finding such a region is
(2€)®. Therefore the survival probability is expected to have
the form
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FIG. 4. Plot of the logarithm of the integrated density of states,
In M(E), versus 1 for E—0 in the casey=0 (full trapping for
a=-—0.5,0,0.5. The behavior is qualitatively different from the case
v=1 whereM(E) is a power law inE.

+oo +oo
Ps(t)zfO ds%(s)P(t,s)fvf0 dsexg —fi(s)],

27 =
where fore<1 we have that e
t
ft(s)zs—l,;+)\sl’”+)\s, (29

where A=|In €. The integral can be carried out using the
steepest descent method which yields the equation

t=Ns2"+\psi Y (29

for the saddle poins,. Sincev<1, at the leading order for

t>1, the solution is FIG. 5. Same as in Fig. 3, for the Lyapunov expong(&). A
nonzero value ofy(E) indicates that the eigenvalleis localized.

So~ (1IN) 272, (30)

Q E)—wyx 14y 1(E)—wW E)=Ey,(E),

Therefore, upon substitution in E(R7) we find at the lead- BB -1 s Wi s (B le((s)z)

ing order int>1
by studying the density of states and the localization proper-

P4(t)~exp(— Cyl), (31 ties. Fory=1 the result is well knowfi17]. The Hamiltonian

. S is positive definite as one can immediately check by defining
whereC is a constant, which is different from the Donsker- the creation

Varad/han case where the argument of the exponential is

13

t. ) . (aT‘//)x: \/Wx,xfl‘ﬁxfl_ \/Wx,x+1‘//x (33
This argument seems to suggest the independence of the

strength of the disorder, which is irrelevant in regions in thegnd destruction

neighborhood of 1/2. Clearly the argument can be extended

to higher dimensions and self-similar lattices. (AY) = Wy 1t 1— Wy s 1805 (34)
VI. SPECTRAL ANALYSIS operators and noting tha##(1)=a'a [18]. Then for any
y<1 we have that, usingy{¢) to indicate the usual scalar

A. Density of states product

We shall here study the spectral properties of the TB
equation associated witf2), (| 7| b)> (. 72(1)| )=0, (35
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FIG. 6. Spatial dependence of the eigenvecifyE) corresponding to the loweiEy,) (a), central €g), (b), and upper E,,) (c) parts
of the spectrum for the case=0 andy=0,1.

and thus the HamiltoniaZ(y) is strictly positive for any [rather than the density of statéfE)] can be computed.

y<1. The validity of the numerical procedure can be tested against
A well known and efficient way to compute the spectrumthe periodic case where the exact result

of a one-dimensional disordered model is by means of the

node-counting theoreril7]. By defining M(E) = 11 arcsin1—E) (39
2
U(E)= x(E) 36
x(B) =Wy—1x Yy 1(E) (36) with E €[0,2] can be easily derived. The cagel was ana-
lytically solved by Stephen and Kariotji42]. They found in
the following recursion can be easily found frd32): the E—O0 limit
Wiy 1 EG-@/2=®)  for 0<a<1l
U E)=[Q -E]- ——. 3 M(E)= 40
1B =[N -El- G (37) ©= g V8 for azo. (40)
By calculating the number of times the quantity,(E)  Our numerical results for=0.5 and 0 reproduce very well
changes sign, the integrated density of states the theoretical prediction. Indeed, we find 0301 and
. 0.45+0.01 for the two cases where the theoretical values are
M(E) = f dE'N(E’) (39) 1/3 and 1_/2, rgspective]y. The=0 case is less precise due to
—w the logarithmic corrections. Our results are based on an av-
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FIG. 7. Inverse participation ratidPR) defined in(50) as func-
tion of the eigenvalué&e for a=0 and y=0,1. Values close to 1
indicate that the state is extended, while values close te DY)
mean that the corresponding eigenvakiés localized.

erage of five different configurations with= 22 sites. We
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and

‘//xl(E))
U(E) |

Upon iteration Eq(43) becomes, iN is the number of sites,

‘I’X(E)=( (45

N—1
W (E)= ( xljo TX<E>)%(E>, (46)
where we have taken the initial vector as
0
Vo(E)=| |- (47)
The Lyapunov exponent is then defined as
1
YE)=lim & In[¥(E)]. (49)

N— oo

Again we tested our algorithm in the case=1l where an
exact resul{12] gives forE—0

E1-a/2-a)  for 0<a<l

E)=
YE) = v invE] for a—o.

(49

found that the results changed very little from one configu-

ration to anothefthis is tantamount to saying thal(E) is

Our results are 0.380.01 (to be compared with 1)3and

self-averagingand thus this average was sufficient for our0-53+0.02 (to be compared with 1j2 For E=0 the

purposes.
The behavior fory=0 is qualitatively different (see Fig.
3). We find forE— 0 (see Fig. 4 a Lifshitz tail singularity:

M(E)=exp(—1/E) (41)

Lyapunov exponent is zero, as it should be since it corre-
sponds to the stationary state of the master equatipfi9].

In the y=0 case, instead, we found thpt0)=c(«), that
is, the ground state i®calized(see Fig. 3. The spectrum is
symmetric arounde=1 and this stems from the fact that the
matrix.7(0)—1 is traceless. Again all the intermediate cases

for all three casea=—0.5,0,0.5. As expected on the basis of (0<y<1) follow this behavior with a shift of the center of
the result of Sec. Ill, all three values of the disorder give thethe spectrum which depends on the valuexof
same guantitative results. Fluctuations in the tail region grow

as the disorder becomes stronger. We have been unable to
give a theoretical derivation for this behavior. It should be

noted that the EMA of Sec. IV yields

1
N(E)=— 42

1
V2E—E?—c

for Ee[1—2u,,1+2u,] and 0 otherwise witlt=1—4u 2.
With ¢=0 this is just the well known result for a periodic
one-dimensional lattice. Again the EMA fails to give quali-
tatively correct predictions.

B. Lyapunov exponent

Equation(32) can be cast in a transfer matrix form,

Wy 1(BE)=T(E)¥L(E), (43
where we have defined the matrices
0 1
T(B)=| wyx-1 Oy -E (44)
Wyx+1  Wxx+1

C. Exact diagonalization

As a cross check for the results of Secs. VI A and VI B,
we direct-diagonalized the matrix if8) for both y=1 and
v=0 by using standarausL package routines for small ma-
trices (N=100). Although a direct quantitative comparison
with the previous results is out of the question since much
higher sizes would be necessary, these results provide a
qualitative understanding of the main difference in the spec-
trum of (3) in the casesy=1 and 0. In Fig. 6 the spatial
dependence of the eigenvecig(E) is displayed fory=0,1
for an energy in the lowe(@), central(b), and uppekc) parts
of the spectrum. The chosen value for the strength of the
disorder wasx=0, but no qualitative change in the behavior
is found for other values of the disorder in the relevant case
v=0. Correctly the ground state=0 for y=1 is extended
as we argued before.

The y=0 ground state is very localized consistently with
our previous findings from the Lyapunov exponent.

Another general probe to test the localization properties is
to compute the inverse participation rafi®R)

1 (S, yx(E)|?)?

PEZR S n@EF
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whereE and ¢,(E) are the eigenvalues and eigenvectors of (2) We found that the trapped case appears to be com
Eq. (32) andN is the number of sites on the lattice. In this pletely disorder dominated, thus suggesting a superuniversal
notat_ion, then a staté is extended whep(E)~1 while iS. behavior independent of the disorderhich is not the case
localized whenevep(E)~1/N<1. The results are shown in for the conserved problemWe provided an intuitive expla-

Fig. 7 and are consistent with the previous picture. nation based on a heuristic derivation of the survival prob-
ability of why this may occur.
VIl. CONCLUSIONS We believe that more analytical work would be necessary

In this paper we have presented a detailed investigation Ofp ra cornplste unc(jjelrstanq:jng c()jf _thehpartlcular \;\?atll(] res ﬁp-
the properties of a one-dimensional disorder model for gifPearing in the model considered in this paper. Work in this

fusion where at each site a fraction of the initial particles carfliréction is ongoing and will be reported in the future.
disappear with random probability depending on the random
adjacent barriers. Our work combines numerical and analyti-

cal techniques. The main results of this investigation can be ACKNOWLEDGMENTS
summarized as follows.
(1) We showed that the trapped caBe<l) is qualita- Enlightening discussion with Klaus Kehr and Hisao Na-

tively different from the conserve@ty=1) counterpart and kanishi are gratefully acknowledged. We also thank Klaus
that a simple mean-field type of approach is not able to capKehr for having suggested the heuristic argument of Sec. V.
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