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The properties of a particle diffusing on a one-dimensional lattice where at each site a random barrier and a
random trap act simultaneously on the particle are investigated by numerical and analytical techniques. The
combined effect of disorder and traps yields a decreasing survival probability with broad distribution~log
normal!. Exact enumerations, effective-medium approximation, and spectral analysis are employed. This one-
dimensional model shows rather rich behaviors which were previously believed to exist only in higher dimen-
sionality. The possibility of a trapping-dominated super-universal-class is suggested.@S1063-651X~96!03606-
9#

PACS number~s!: 05.40.1j, 05.60.1w, 61.43.Hv

I. INTRODUCTION

One-dimensional models are widely used in the physics of
disordered systems@1#. This is because on one hand they are
often good representatives of higher-dimensional models and
on the other hand they are much easier to handle. In recent
decades the importance of investigating simple diffusion in
the presence of disorder and trapping has been widely appre-
ciated as a toy model for complex systems, including migra-
tions of optical excitations@2#, polymer physics@3#, and
diffusion-limited binary reactions@4#. See, e.g.,@5# and @6#
for an exhaustive review.

From the mathematical viewpoint the analytical solution
of the diffusion problem of particles diffusing before getting
completely absorbed by permanent traps has proved an ex-
tremely difficult task and only an asymptotic solution for the
survival probability~to be defined below! in the presence of
uncorrelated disorder could be given using sophisticated
techniques@7#. A variation of this problem, in the presence
of strongly correlated~percolating! disorder, was also re-
cently numerically investigated@8,9#, and it was observed
that whenever the total survival probability is an erratically
decreasing function~i.e., detailed balance is violated! new
and unexpected behaviors such as enhanced diffusion, break-
ing of self-averaging, and emergence of Lifshitz tails@8,9#
appear. All these latter phenomena were somehow believed
to stem from the percolating lattice used to model the disor-
der.

Here we shall investigate a different problem, where
walks are partially and randomly absorbed ateachsite of a
one-dimensional lattice, thus leading to a nonconservation of
the probability. From the physical point of view this model
can mimic the partial absorption of a set of excitons wander-
ing in mixed crystals. We shall show that despite the low
dimensionality of the model, a rich variety of features quali-
tatively similar to the ones observed in the trapping in per-
colating disorder@8,9# can be found. The low dimensionality
of the model, however, leaves open the possibility of a full

analytical solution which would extend the results presented
here.

Diffusion on a one-dimensional hierarchical lattice@10#
and multifractal characterization of the escape probability
@11# were previously considered in this context.

Our aim here is then twofold. On one hand, we shall show
that most of the pathological features of the model consid-
ered in Refs.@8,9# are also present in this simplified low-
dimensional version. On the other hand, the results presented
here can be regarded as a complement of earlier investiga-
tions @6,12# where the total probability is conserved, thus
providing a direct test of the effect of the nonconservation of
the probability.

The outline of the paper is as follows. In Sec. II we intro-
duce the model and recall some well known general manipu-
lations of disordered one-dimensional lattices. Section III
contains a numerical solution of the master equation. Section
IV contains an effective-medium approximation to the diffu-
sion, which is shown to be inadequate. However, in Sec. V a
heuristic argument patterned after Grassberger and Procac-
cia’s similar reasoning for the Donsker-Varadhan case@7#
provides an intuitive explanation of the numerical results.
Section VI contains a detailed numerical investigation of the
influence of trapping on the spectrum and the localization
properties. Finally, in Sec. VII some conclusions are drawn
up.

II. MODEL

Consider a particle moving on a one-dimensional lattice
with random barriers and random trapping probability on
each site. The master equation reads

Px0 ,x
~ t11!5g~12ex!Px0 ,x

~ t !1wx,x21Px0 ,x21~ t !

1wx,x11Px0 ,x11~ t ! ~1!

for the probabilityPx0 ,x
(t) of being at sitex at time t, hav-

ing started from sitex0 at the initial timet50. In this nota-
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tion wx,y is the hopping probability from sitey to site x,
ex5wx21,x1wx11,x,1, andgP@0,1# is a parameter defining
the sojourn probability, which can be continuously tuned
from from 1 ~no trapping! to 0 ~full trapping!. Thus at each
time step a particle at sitex can move to sitesx61 with
random probabilitywx,x61, stay atx with sojourn probability
g(12ex), and disappear with probability (12g)(12ex). In
the following we shall consider only the case of symmetric
hopping probability (wx,y5wy,x) and an infinite lattice.

As is well known @1#, when g51 this model can be
mapped into a variety of other one-dimensional models.

The ~discrete! Laplace transformP̃x0 ,x
(v) of the prob-

ability Px0 ,x
(t) satisfies an equation of motion which can be

cast in the following Green equation for a tight binding~TB!
Hamiltonian:

(
y

@E2H~g!#x,yGx0 ,y
~E!5dx,x0, ~2!

corresponding to the generalized TB Hamiltonian

Hx,y~g!5Vx~g!dy,x2wx,y~dy,x211dy,x11!, ~3!

where we have definedVx(g)[gex112g and Gx0 ,x
(E)

[2 P̃x0 ,x
(v)uv52E . Here the~discrete! Laplace transform

is defined as

P̃x0 ,x
~v!5(

t50

1` Px0 ,x
~ t !

~11v! t11 . ~4!

On the other hand, Eq.~1! can be written in the form

Px0 ,x
~ t11!5(

y
Tx,y~g!Px0 ,y

~ t !, ~5!

where we have defined the transition matrix

Tx,y~g!5H g~12ex! if x5y

wx,y if ux2yu51

0 otherwise.

~6!

It is then easy to check that ifg,1 ~and thus(xTx,y,1 for
anyx!, then all the eigenvalues$la% of T arestrictly less than
unity, i.e.,ulau,1 for anya, unlike the conserved case~g51!
where the fact that the maximum eigenvaluelM is nonde-
generate and equal to 1 irrespective of the~finite! size of the
system is ensured by the Perron-Frobenius theorem@13#.
Equivalently, this means that the eigenvalues$Ea% of the
Hamiltonian~3! are allstrictly positive, i.e.,Ea.0 for any
a.

All the results presented in this paper were obtained using
the discrete time equation~1!. The continuum time counter-
part of Eq.~1! would be, in the coutinuous time random walk
~CTRW! formulation,

] tPx0 ,x
~ t !5ŵx,x21Px0 ,x21~ t !1ŵx,x11Px0 ,x11~ t !

2 êxPx0 ,x
~ t !2b̂xPx0 ,x

~ t !, ~7!

where we have indicated withb̂x the absorption rate at sitex
and used the tildes to indicate the quantities which are rates.
By balancing the gain, loss, and sojourn terms to unity, it is
easy to see thatb̂x5(12g)(12 êx). However, it should be
stressed that Eq.~7! is not the continuum limit of Eq.~1!.

III. EXACT ENUMERATION

We have considered a distribution of the disorder given
by

r~w!5212a~12a!w2au~w!u~1/22w!, ~8!

whereaP~2`,1!. By varying the parametera we can pass
from weakdisorder ~a,0! to strong disorder ~a→1!. The
casea50 corresponds to a uniform distribution and it is
marginal in the sense that the inverse first moment is loga-
rithmically divergent. We shall indicate with an overbar the
average over the disorder~8! which is assumed to be
quenched. The simplest quantity that one would like to com-
pute is the mean-square displacement

^x2~ t !&5
(x~x2x0!

2Px0 ,x
~ t !

(xPx0 ,x
~ t !

, ~9!

where it should be noted that the denominator must be in-
cluded since the total probability is not conserved. The dis-
order average of the latter is called thesurvival probability
Ps(t) and it is a decreasing function of time, once we have
chosen the initial conditionsPs(0)51. The return probabil-
ity

P0~ t !5
Px0 ,x0

~ t !

(xPx0 ,x
~ t !

~10!

is another interesting quantity to look at and it is again dif-
ferent from thesurvival returnprobability Ps

0(t)5Px0 ,x0
(t)

in view of the nonconservation of the probability. A suitable
normalization procedure@8# is to be used in order to avoid a
quick underflow of the survival probability.

We numerically solved the master equation exactly up to
t51000 for three representative values of the strength of the
disorder, namely,a520.5 ~weak disorder!, a50 ~marginal
disorder!, anda50.5 ~strong disorder!. The lattice size was
chosen sufficiently large~up toN5218! to avoid finite size
effects due to the boundaries. Our estimates are based on an
average of three samples of 1000 different configurations
each. Errors are statistical.

The caseg51 was previously studied in Ref.@6# and our
numerical results are in perfect agreement with the one re-
ported there. Indeed, we find

^x2~ t !&5t2n, ~11!

wheren is the correlation length exponent, and

P0~ t !5t2ds/2, ~12!

whereds is the return probability exponent. Our estimates
are 2n50.9960.01 and 0.6860.01 fora50 and 0.5, respec-
tively, which compare well with the expected values 1 and
2/3.
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The caseg50, corresponding to a full trapping, appears
to be completely trapping dominated. Indeed, here the
sample-to-sample fluctuations are enormous and they com-
pletely rule the diffusion. In order to have a feeling for this,
we plotted in Fig. 1 the mean-square displacement for a
single configuration obtained with the same initializing seed,
in the casesg51 and 0 for various strengths of the disorder.
The staircase behavior which can be observed in the case
g50 is a consequence of the nonconservation of the prob-
ability. A similar effect occurs in the return probability. This
rather peculiar feature was already observed in the model of
Ref. @8#. Here, however, the extremely weak dependence of
the behavior on the strength of the disorder is noteworthy.

Upon disorder averaging we find, in theg50 case, that
the first moment [̂x(t)&] is zero as expected, and the second
moment^x2(t)& and the return probabilityP0(t) follow the
behaviors~11! and ~12!, respectively.

Our best estimates for the exponentsn andds are reported
in Table I. As mentioned above, the very similar result for
the three cases ofa is somewhat surprising, but it is in agree-
ment with the aforementioned interpretation. Although the
three values are not all within the numerical errors, we can-
not rule out the possibility that the universality class isinde-
pendentof the disorder choice. We also checked that all the
intermediate cases 0,g,1 behave as in theg50 case after a
transient time which depends on the value ofg. It should be

stressed thatds bears the meaning of thespectral dimension
@6# only in the caseg51.

Although we monitored the behavior of the survival prob-
ability and found that it decays as a stretched exponential
~i.e., with an argument for the exponential which is a power
of the time less than 1!, we also found that the numerical
value of the exponent is not very easy to pin down. This was
to be expected: a similar feature occurs in the Donsker-
Varadhan problem@14#.

In view of these results, one expects both the survival
probability and the survival return probability to benon-self-
averaging quantities. We investigated the full probability
distributions of both quantities. We find~see Fig. 2! that they
rather accurately follow a log-normal distribution:

P @X~ t !#5
1

XA2ps t
2
expF2~ ln X2l t!

2

2s t
2 G , ~13!

whereX(t)5Px0 ,x0
(t) or (xPx0 ,x

(t). Here l t and s t
2 are

the mean and the variance of the distribution, respectively. If
asymptotically (t@1) it happens thats t

2@l t then self-
averaging isbroken ~see the discussion in Ref.@8#!. Both
these quantities can be computed directly as first (l t) and
second (s t

2) moments of the distribution but also indirectly
by fitting the evolution of the log-normal function at various
values oft. We find the following behavior fort@1:

s t
2;t2x ~14!

for the survival probability~and this defines the ‘‘free-
energy’’ exponentx!, and a similar behavior for the survival
return probability~which defines the analogous exponentx0!.
Our best estimates for these exponents are reported in Table
II. On the other hand, we find that asymptoticallyl t;t for
both the survival and the survival return probability. Since in
all cases 2x.1 the self-averaging property is broken@8#.

As a final remark we computed higher moments@^x4(t)&,
^x6(t)&, etc.# in the attempt to find signatures of multifracta-
lity as suggested by the results of Ref.@11#. We found that
all the moments were related to the second one irrespective
of the strength of the disorder, thus ruling out the possibility
of multifractal behavior in the size of the walk.

IV. EFFECTIVE-MEDIUM APPROXIMATION

In this section we will tackle the problem of solving Eq.
~1! by using an effective-medium approximation~EMA!. Al-
though this approximation is known to fail in many situa-
tions @5#, it nevertheless gives extremely accurate results for
the problem described by~1! with g51 @6#. Here we shall
carry the successful recipe given in@6# to the other extreme,
namely, the case of full trapping~g50!.

The equation of motion for the Laplace transform
P̃x0 ,x

(v) can be written in the form~taking x050 for con-
creteness!

G 0,x~v!5mx21~v!G 0,x21~v!1mx~v!G x11~v!1dx,0,
~15!

FIG. 1. Log-log plot of the mean square displacement^x2(t)&
for a single configuration in the casesg51 ~no traps! andg50 ~full
trap! for representative values of the disorder~a520.5,0,0.5!. The
g50 case appears to be independent of the strength of the disorder
parametera.

TABLE I. Summary of the exponentsn andds for theg50 case
at three representative values of the strength of the disorder.

a 2n ds/2

20.5 1.2460.01 0.5760.01
0 1.2560.01 0.5960.01
0.5 1.2660.01 0.6060.01
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whereG 0,x(v)5(11v) P̃0,x(v) and where we have defined
mx(mx21)5wx,x11(wx21,x)/(11v). Forx.0 andx,0 one
can introduce the following new fields:

fx
1~v!5

mx21~v!G 0,x~v!

G 0,x21~v!
, fx

2~v!5
mx~v!G 0,x~v!

G 0,x21~v!
,

~16!

respectively. In this way the problem is reduced to first order
and can be solved by continued fractions. Forx.0 one finds
the following recursions:

fx
1~v!5

mx21
2 ~v!

12fx11
1 ~v!

. ~17!

A similar equation can be found forx,0. It should be noted
that the support for thef1,2 has to be constrained in such a
way that Eq.~17! be sensible. From Eq.~15! for the case
x50 and using Eq.~17! and the corresponding one forx,0
one easily finds that

G 0,0~v!5
1

12f11
1 ~v!2f21

2 ~v!
. ~18!

The disorder average of Eq.~18! thus gives

FIG. 2. Distribution density probability for the survival probability for time stepst5200,400,600,800,1000. The full lines correspond to
the fitted log-normal distribution of the form~13!. Shown are the casesa520.5, 0, and 0.5 corresponding to~a!, ~b!, and~c!, respectively.

TABLE II. Summary of the exponentsx andx0 defined in the
text. The labels (D) and (I ) mean direct evaluation and evaluation
from the log-normal distribution, respectively. The values corre-
sponding to a dash were considered unreliable due to the presence
of a strong curvature in the preasymptotic regimes.

a x(D) x0(D) x(I ) x0(I )

20.5 0.7060.01 0.7260.01 0.7260.01 0.7060.01
0 0.7360.01 – 0.7260.01 0.7060.01
0.5 – – 0.7260.01 0.7060.01
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G 0,0~v!5E df1E df2Pv
1~f1!Pv

2~f2!

3
1

12f12f2
u~12f12f2!, ~19!

where the distributionsPv
1~f1! andPv

2~f2! are given by

Pv
1~f1!5E dm r~m!E df18 Pv

1~f18 !dS f12
m2

12f18
D ,

~20!

and similarly forPv
1~f2!. Now comes the EMA approxima-

tion:

Pv
1~f1!5Pv

2~f2!5d„f2fe~v!…, ~21!

where fe(v) is an effective field to be found self-
consistently. We can immediately show that the self-
consistency equation decouples and its solution is given by

fe~v!5
12A124ma

2~v!

2
~22!

[ma(v)5ma/(11v)] provided that the second moment of
the distribution

ma
2[

* dm m2r~m!

* dm r~m!
~23!

exists. As a consequence,

G 0,0~v!5
1

A124ma
2~v!

. ~24!

Due to conditions imposed on the transition rates, we have
thatma<1/2. If equality holds then the result is identical to
the one obtained in the absence of disorder. If, however,
ma,1/2 then by antitransforming back to the direct domain
~in the continuum approximation!, it is easy to show that the
survival return probability behaves as

Ps
0~ t !5e2tI 0~2mat !, ~25!

where I 0(z) is the zeroth-order Bessel function. Upon as-
ymptotic expansion@15# the leading behavior fort@1 is

Ps
0~ t !5

e2~122ma!t

A4pmat
F11

1

16mat
1OS 1t2D G . ~26!

The result isqualitativelydifferent from the numerical indi-
cation. This was to be expected in@5# that the EMA may not
be capable of capturing the nuances of systems where large
sample-to-sample fluctuations are present.

V. HEURISTIC ARGUMENT

In this section we shall present an intuitive argument
yielding a stretched exponential for the survival probability
in qualitative agreement with our numerical findings@16#.
The argument is based on a similar one given by Grassberger
and Procaccia@7# for the Donsker-Varadhan problem, and
provides a plausible explanation of the irrelevance of the
choice of the distribution for the hopping probabilityr(w).

The main idea is that the maximum contribution to the
survival probability comes from rare regions where the hop-
ping probabilities are all very close to 1/2, say in the interval
@1/22e,1/2# ~with 0,e!1/2! for the sake of the argument. If
s is the number of sites of one of these regions, the typical
number of stepst necessary to explore the region ist;s1/n.
If there were no leaking of probability the decay of the sur-
vival probability in this regionP(t,s) would be exponential.
However, during the timet, there is a loss of probability of
order et. The probabilityP (s) of finding such a region is
(2e)s. Therefore the survival probability is expected to have
the form

FIG. 3. Integrated density of states on the whole spectrum
EP[0,2] for g51 ~a! andg50 ~b! for the same strengths of disor-
der as in Fig. 2.
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Ps~ t !5E
0

1`

ds P ~s!P~ t,s!;E
0

1`

ds exp@2 f t~s!#,

~27!

where fore!1 we have that

f t~s!5
t

s1/n
1ls1/n1ls, ~28!

where l5uln eu. The integral can be carried out using the
steepest descent method which yields the equation

t5ls0
2/n1lns0

~11n!/n ~29!

for the saddle points0 . Sincen,1, at the leading order for
t@1, the solution is

s0;~1/l!n/2tn/2. ~30!

Therefore, upon substitution in Eq.~27! we find at the lead-
ing order int@1

Ps~ t !;exp~2CAt !, ~31!

whereC is a constant, which is different from the Donsker-
Varadhan case where the argument of the exponential is
;2t1/3.

This argument seems to suggest the independence of the
strength of the disorder, which is irrelevant in regions in the
neighborhood of 1/2. Clearly the argument can be extended
to higher dimensions and self-similar lattices.

VI. SPECTRAL ANALYSIS

A. Density of states

We shall here study the spectral properties of the TB
equation associated with~2!,

Vx~g!cx~E!2wx,x21cx21~E!2wx,x11cx11~E!5Ecx~E!,
~32!

by studying the density of states and the localization proper-
ties. Forg51 the result is well known@17#. The Hamiltonian
is positive definite as one can immediately check by defining
the creation

~a†c!x5Awx,x21cx212Awx,x11cx ~33!

and destruction

~ac!x5Awx11,xcx112Awx,x11cx ~34!

operators and noting thatH~1!5a†a @18#. Then for any
g,1 we have that, usinĝcuw& to indicate the usual scalar
product

^cuH~g!uc&.^cuH~1!uc&>0, ~35!

FIG. 4. Plot of the logarithm of the integrated density of states,
ln M (E), versus 1/E for E→0 in the caseg50 ~full trapping! for
a520.5,0,0.5. The behavior is qualitatively different from the case
g51 whereM (E) is a power law inE.

FIG. 5. Same as in Fig. 3, for the Lyapunov exponentg(E). A
nonzero value ofg(E) indicates that the eigenvalueE is localized.
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and thus the HamiltonianH~g! is strictly positive for any
g,1.

A well known and efficient way to compute the spectrum
of a one-dimensional disordered model is by means of the
node-counting theorem@17#. By defining

Ux~E!5wx21,x

cx~E!

cx21~E!
~36!

the following recursion can be easily found from~32!:

Ux11~E!5@Vx~g!2E#2
wx,x21
2

Ux~E!
. ~37!

By calculating the number of times the quantityUx(E)
changes sign, the integrated density of states

M ~E!5E
2`

E

dE8N~E8! ~38!

@rather than the density of statesN(E)# can be computed.
The validity of the numerical procedure can be tested against
the periodic case where the exact result

M ~E!5
1

2
2
1

p
arcsin~12E! ~39!

with EP[0,2] can be easily derived. The caseg51 was ana-
lytically solved by Stephen and Kariotis@12#. They found in
theE→0 limit

M ~E!5H E~12a!/~22a! for 0,a,1

E1/2/Au ln AEu for a50.
~40!

Our numerical results fora50.5 and 0 reproduce very well
the theoretical prediction. Indeed, we find 0.3460.01 and
0.4560.01 for the two cases where the theoretical values are
1/3 and 1/2, respectively. Thea50 case is less precise due to
the logarithmic corrections. Our results are based on an av-

FIG. 6. Spatial dependence of the eigenvectorscx(E) corresponding to the lower (EM) ~a!, central (E0), ~b!, and upper (Em) ~c! parts
of the spectrum for the casea50 andg50,1.
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erage of five different configurations withN5218 sites. We
found that the results changed very little from one configu-
ration to another@this is tantamount to saying thatN(E) is
self-averaging# and thus this average was sufficient for our
purposes.

The behavior forg50 is qualitativelydifferent ~see Fig.
3!. We find forE→0 ~see Fig. 4! a Lifshitz tail singularity:

M ~E!5exp~21/E! ~41!

for all three casesa520.5,0,0.5. As expected on the basis of
the result of Sec. III, all three values of the disorder give the
same quantitative results. Fluctuations in the tail region grow
as the disorder becomes stronger. We have been unable to
give a theoretical derivation for this behavior. It should be
noted that the EMA of Sec. IV yields

N~E!5
1

p

1

A2E2E22c
~42!

for EP[122ma,112ma] and 0 otherwise withc5124m a
2.

With c50 this is just the well known result for a periodic
one-dimensional lattice. Again the EMA fails to give quali-
tatively correct predictions.

B. Lyapunov exponent

Equation~32! can be cast in a transfer matrix form,

Cx11~E!5Tx~E!Cx~E!, ~43!

where we have defined the matrices

Tx~E!5S 0 1

2
wx,x21

wx,x11

Vx~g!2E

wx,x11

D ~44!

and

Cx~E!5S cx21~E!

cx~E! D . ~45!

Upon iteration Eq.~43! becomes, ifN is the number of sites,

CN~E!5S )
x50

N21

Tx~E!DC0~E!, ~46!

where we have taken the initial vector as

C0~E!5S 01D . ~47!

The Lyapunov exponent is then defined as

g~E!5 lim
N→`

1

N
lniCN~E!i . ~48!

Again we tested our algorithm in the caseg51 where an
exact result@12# gives forE→0

g~E!5H E~12a!/~22a! for 0,a,1

E1/2/Au lnAEu for a50.
~49!

Our results are 0.3460.01 ~to be compared with 1/3! and
0.5360.02 ~to be compared with 1/2!. For E50 the
Lyapunov exponent is zero, as it should be since it corre-
sponds to the stationary state of the master equation~1! @19#.

In theg50 case, instead, we found thatg(0)5c(a), that
is, the ground state islocalized~see Fig. 5!. The spectrum is
symmetric aroundE51 and this stems from the fact that the
matrixH~0!21 is traceless. Again all the intermediate cases
~0,g,1! follow this behavior with a shift of the center of
the spectrum which depends on the value ofa.

C. Exact diagonalization

As a cross check for the results of Secs. VI A and VI B,
we direct-diagonalized the matrix in~3! for both g51 and
g50 by using standardIMSL package routines for small ma-
trices (N5100). Although a direct quantitative comparison
with the previous results is out of the question since much
higher sizes would be necessary, these results provide a
qualitative understanding of the main difference in the spec-
trum of ~3! in the casesg51 and 0. In Fig. 6 the spatial
dependence of the eigenvectorcx(E) is displayed forg50,1
for an energy in the lower~a!, central~b!, and upper~c! parts
of the spectrum. The chosen value for the strength of the
disorder wasa50, but no qualitative change in the behavior
is found for other values of the disorder in the relevant case
g50. Correctly the ground stateE50 for g51 is extended
as we argued before.

The g50 ground state is very localized consistently with
our previous findings from the Lyapunov exponent.

Another general probe to test the localization properties is
to compute the inverse participation ratio~IPR!

p~E!5
1

N

~(xucx~E!u2!2

(xucx~E!u4
, ~50!

FIG. 7. Inverse participation ratio~IPR! defined in~50! as func-
tion of the eigenvalueE for a50 andg50,1. Values close to 1
indicate that the state is extended, while values close to 0 (;1/N)
mean that the corresponding eigenvalueE is localized.
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whereE andcx(E) are the eigenvalues and eigenvectors of
Eq. ~32! andN is the number of sites on the lattice. In this
notation, then a stateE is extended whenp(E);1 while is
localized wheneverp(E);1/N!1. The results are shown in
Fig. 7 and are consistent with the previous picture.

VII. CONCLUSIONS

In this paper we have presented a detailed investigation of
the properties of a one-dimensional disorder model for dif-
fusion where at each site a fraction of the initial particles can
disappear with random probability depending on the random
adjacent barriers. Our work combines numerical and analyti-
cal techniques. The main results of this investigation can be
summarized as follows.

~1! We showed that the trapped case~g,1! is qualita-
tively different from the conserved~g51! counterpart and
that a simple mean-field type of approach is not able to cap-
ture the large fluctuation introduced by the nonconservation
of the probability.

~2! We found that the trapped case appears to be com
pletely disorder dominated, thus suggesting a superuniversal
behavior independent of the disorder~which is not the case
for the conserved problem!. We provided an intuitive expla-
nation based on a heuristic derivation of the survival prob-
ability of why this may occur.

We believe that more analytical work would be necessary
for a complete understanding of the particular features ap-
pearing in the model considered in this paper. Work in this
direction is ongoing and will be reported in the future.
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